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ABSTRACT

In this paper we introduce a new class of sets called a)ﬂ — open sets which contains the
class of @ — open and ,3 — open sets. Here we carry out a study of the properties of

a),B — open sets.
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1. INTRODUCTION
Throughout this work a space will always mean a topological space
with no separation axioms assumed, unless otherwise stated. Let (X,7) be a
space and A a subset of X . By Int(A) and CI(A), we denote the interior
of A and the closure of 4, respectively, in (X,7). A point x € X is called

a condensation point of A if for each open set U containing x , the set
U A is uncountable. 4 is said to be @— closed (Hdeib (1982)) if it
contains all its condensation points. The complement of an @ — closed set is
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said to be @— open. Note that a subset 4 of a space (X,7) is @— open

(Al-Zoubi and Al-Nashef (2003)) if and only if for each x € 4 there exists
an open set U containing x such that U — A4 is countable. The family of all
@ — open subsets of a space (X,7), denoted by wO(X,7), forms a

topology on X', denoted by 7, , finer than 7. Several characterizations of
@ — closed subsets were proved in Hdeib (1982).

A subset A of a space (X,7) is said to be b—open (Andrijevi¢
(1996)) (resp. ff—open (Monesf et al. (1983)) or semi-preopen (Andrijevié
(1986)) if A < Int(CI(A))NCl(Int(A)) (resp. A < Cl(Int(CI(A))) ). The
complement of a ff— open set is called a f— closed set. The set of all
[ — open subset in (X, 7) will be denoted by fO(X,7).

In 2008, Noiri et al. introduced the notion of @b —open sets. They
defined a subset 4 of a space (X,7) to be wb—open if for every x € 4

there exists a b—open set U in (X,7) containing x such that U — 4 is
countable. The family of all @b —open subsets of (X, 7) will be denoted by
wbO(X,7).

In this paper, we introduce the notion of wf —open sets which is a
new generalization of both @ — open sets and ff — open sets. We investigate
some properties of @ff —open sets. Moreover, by using @ff —open sets, we
define and investigate £ — Lindelof spaces, wf —T, spaces, @ff — regular

spaces, and @f —normal spaces.

Now we recall some known results which will be used in the sequel.

Lemma 1.1. (Andrijevic (1986)).
If U is open and A is S —openin a space (X,7), then U1 4 is S — open
in (X,7).

Theorem 1.2. (Navalagi (2002)).
Let (X,7) be a space, AcY < X and Y be f—open in (X,7). Then 4

is f—openin (X,7) ifand only if 4 is f —open in the subspace (¥,7,).
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2. ®B-OPEN SETS

Definition 2.1.
A subset 4 of a space (X,7) is said to be wf —open if for every x € 4,

there exists a f#—open set U containing x such that U — 4 is countable.
The family of all @f — open subsets of (X,7r) will be denoted by
wfO(X,7).

Note that if X is a countable set then every subset of X is
wf —openin (X,7).

Theorem 2.2.
For any space (X, 7), the following properties hold:

(i)  Every wb—open setis wf —open.
(i)  Every f—open setis wf —open.

The proof follows easily from Definition 2.1.
Open — b—open — ff—open

\ \ \

@ —open — wb—open — ®f —open
The converses need not be true as shown by the following examples.

Example 2.3.
Let X ={1,2,3},7={X,4,{1}.{2}.{1.2}}, then {3} is w— open in
(X,7), butitis not — open.

Example 2.4.
Let X =R with the usual topology 7, and let A =Q be the set of all

rational numbers. Then, since 4 < Int(CI(A)), A is b—open in (X,7),
but it is not @ — open.

Example 2.5.
Let X =R with the usual topology 7, and let 4 :[O,l)ﬂ(@. Then, by

Lemma 3.5 of Noiri (1984) CI(Int(CI(A))) = CI[Int(CI([0,1))) () Int(CI(
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Q)]=CI(0,1)NX]=[0,1]1> A. Therefore, A is S — open, but it is not
wb —openin (X,7) by Example 2.10 of Noiri (2008).

Lemma 2.6.
A subset A of a space (X,7) is @ff —open if and only if for every x € 4,

there exists a f— open set U and a countable subset C such that
xeU-CcA.

Proof.
Let A be wff —open and x € A. Then there exists a f—open set U = X

containing x such that U—A is countable. Hence U is [ — open,
C =U — A4 is the countable set and U — C < A4 . The converse is obvious.

Proposition 2.7.
The intersection of an @ff —open set and an @ — open set is @f — open.

Proof.
Let A be an wf —open set and B an @— open set. Then there exist a

S —open set U, containing x such that U, — A4 is countable and an open
set U, containing x such that U, —B is countable. By Lemma 1.1,
U,NU, is a f— open set containing x and (U,NU,)—(4NB)
c(U,-A)NU,—B) and hence (U,NU,)—(A(B) is a countable set.
Therefore (A()B) is an @f3 —open set.

Corollary 2.8.
The intersection of an @ff — open set and an open set is @/ — open.

The intersection of a f— open set and an @f — open set is not
always @ff —open as the following example shows. Thus, the intersection of
two @f — open sets need not be wff —open.

Example 2.9.
Let X =R with the cocountable topology 7=7, . Let 4=(0,1] and

B=[1,2). Then 4 and B are wf— open, but A()B is not wf — open,
since each f# — open containing 1 is uncountable.
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Proposition 2.10.
The union of any family of @f —open sets is @ — open.

Proof.
If {4, :a €A} is a collection of @wff —open subsets of X, then for every

xe U 4,, xe A, for some o, € A. Hence there exists a 5 —open subset

ael

U containing x such that U—4, is countable. Hence U~— U 4, is

aeA

countable. This shows that U A4 is @f —open.

aeA

Definition 2.11.
The topology generated by wfO(X,7) is defined as T(wfO(X,7))=

{VcX: VNS ewpO(X,r) whenever S € oBO(X,7)}.

Proposition 2.12.
T(ofO(X,7)) is atopology on X larger than 7 .

Proof.
We first show that T(wfO(X,7)) is a topology on X . It is clear, by

Definition 2.11, @, X e T(wfO(X,r)) . Now, let {U, :aeA} be a
collection of @f? —open sets in (X,7), then for each a €A, U, (S is
wff —open in (X,7) whenever S is @f —open in (X, 7). By Proposition
2.10, ( UAU“) NS = UA(U“ NS) e wBfO(X,r) whenever S € wBO(X,7).

Thus by Definition 2.11, U U, € T(wfO(X,7)) . Finally, let U,,U, € T(

ael
®fO(X,7)) and S be any @f— open set. Then U, (S € fO(X,7)
and hence (U,NU,NS=U,NU,NS)e®wfO(X,r) . Therefore,
U,NU, e T(wfO(X,7)). This proves that T(wfO(X,7)) is a topology
on X . To show 7 < T(wfO(X,7)), let U e . Then by Corollary 2.8
UNS ewpfO(X,r) whenever S € wBO(X,7). Therefore, U € T(wpfO
(X,7)).
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Recall that the topology generated by FO(X,7) (Ganster and
Andrijevi¢ (1988)) is defined as T(BO(X,7)={V/ c X : V(S € SO
(X,7) whenever S € fO(X,7) whenever S € fO(X,7)}. In Ganster and
Andrijevi¢ (1988), T'(SO(X,7)) is denoted by 7. But, we use the notation

T(PO(X,7)) instead of Ty.

Theorem 2.13.
For a topological space (X,7), oT(SO(X,7))cT(0fO(X,7)), the

converse is true if every S —open set is open in (X,7) .

Proof.
Let Ae T (BO(X,7)) . We show that AV € fO(X,7) for every

V ewfO(X,7). Let x€ A(\V , then x€ 4 and x € V. Then there exists
OeT(PO(X,7)) such that xe O and O— A is countable. And there
exists Be€ fO(X,7) such that xe B and B—V is countable. Since
0eT(BO(X,7)), xe OB e BO(X,7). On the other hand, (O B)—
(ANV)Yc(O-A4)UB-V) and (O-A)U(B-V) is countable.
Therefore, (O(1B)—(A(V) is countable and hence AV € wfO(X,7).
Conversely, Let 4eT(wpO(X,7)), So ANV € wPO(X,7) for every
VewpO(X,r) . Let xe A(\V , then there exists Oe SO(X,7)
containing x such that O—(A(1V) is countable. By assumption,
OeT(fO(X,r)) such that (O—A) is countable. Hence, A€
oT(LO(X,7)).

Theorem 2.14.
Let (Y,7,) be a subspace of (X,7) and ACY:

(i) If 4 is wf —open in (X,7) and Y is open, then A is ®ff —open
in (Y,7,).

(i) If 4 is wf— open in (Y,7,) and Y is S — open, then A4 is
wff —openin (X,7).

Proof.
(i) Let 4 be wff —openin (X,7). For every x € A, there exists a ff —open
set U in (X,7) containing x such that U — 4 is countable. If U C Y by
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Theorem 1.2 U is f— open in (Y,7,) containing x and hence A is
@f —openin (Y,7,).1f U is not contained in Y, set U, =U (1Y . Then by
Lemma 1.1 U, is f—open in (Y,7,) and U, — 4 is countable. Therefore,
A4 is wf —openin (Y,7,).

(ii) Let 4 be @wf —open in (Y,7,). Then for every x € A, there exists a
P —open set U in (Y,7,) containing x such that U — 4 is countable.
Hence by Theorem 1.2, A4 is @wff —openin (X,7).

In Theorem 2.14, we can not delate the assumption that Y is
B —openin (X,7). To see that consider the space (R,7,.) and the subset
Y=Q of R and take a subset A ={1} of Y. Hence 4 is @f — open in
(Y,7,)but 4 isnot @wf —openin (R,z, ).

coc

Corollary 2.15.
Let (Y,7,) be a subspace of (X,7), ACY and Y be an open set. Then 4

is wff —openin (X,7) ifand only if 4 is wff —openin (¥,7,).

Definition 2.16.
A subset F' of a topological space (X,7) is said to be @wf — closed if

X —F is wf —open. The family of all @f —closed subsets of (X, 7) will
be denoted by wfC(X,7).

Proposition 2.17.
Let (X,7) be a space and C < X . If C is wf —closed in (X,7), then

Cc KN B forsome f—closed subset K and a countable subset B .

Proof.
If C is @wf — closed, then X —C is @f— open and hence for every

xe X —C, there exist a f—open set U in (X,7) containing x and a
countable set B such that U-Bc X —C , thus Cc (X -U)UB . Let
K=X-U,then K isa f—closed set such that C < K UB.
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Remark 2.18.
Let (X,7) be a space and A, B subsets of X . Then the following properties

hold.
(i)  The intersection of any family of @f — closed sets in (X,7) is

wf —closed.

(i)  Every @f — closed set and every S — closed set in (X,7) are
wf —closed.

(iii) If A is w— closed and B is wf— closed, then AUB is
wf —closed.

The intersection of all @f —closed sets of X containing A4 is called
the wf —closure of A and is denoted by wfCI(A). And the union of all
@f — open sets of X contained in A is called the @f — interior and is
denoted by wfInt(A).

Theorem 2.19.
Let A be a subset of a space (X,7). Then x € @fCI(A) if and only if for

every @f3 —open set U containing x, AU # ¢.

Proof.
First, suppose that x € ®fCI(A) and U is any wff — open containing x

such that AU =¢. Then (X —U) is an @f3 —closed set containing A .
Thus, wfCI(A) = (X —U). Then x ¢ wfCI(A), which is a contradiction.
Conversely, Suppose x ¢ wfSCI(A), there exists an wf —closed set V' such
that AcV and x ¢V . Then X —V is an wf —open set containing x and

ANX V)= 4.

3. p- LINDELOF SPACES
Definition 3.1.

(1) A space (X,7) is said to be f— Lindeldf if every f—open cover
of X has a countable subcover.
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(i) A subset A of a space (X,7) is said to be £ — Lindelof relative to
X if every cover of A by £ —open sets of (X,7) has a countable
subcover.

Theorem 3.2.
For a space (X,7), the following properties are equivalent:

(1) (X,7) is f— Lindel6f.
(i)  Every @f —open cover of X has a countable subcover.

Proof.
(1) > (1) Let {U, : @ € A} be an @f —open cover of X . For each x € X

there exists ¢, €A such that xeU, . Since U, is @f — open, there
exists a f—open set V., such that xeV, “and V, —U, "is countable.
The family {Va( ixe X} is a f— open cover of X and (X,7) is

f— Lindeldf. There exists a countable subset, says ¢, ...«

% ()

such that X:U{V%_) :ieN} . Now, we have X:{U(V%_)—Ua )}

ieN X (%)
U{u U, }-Foreach o, V, —U, isa countable setand there exists

ieN (x;)? A(xp) Ay

a countable subset A, of A such that ¥, -U, < U, :ae A, b

i

Therefore, we have X c[U(U{U, :a € A, b Uy U, )
ieN i ieN i

(i1) > (1) The proof is obvious since every [ — open set is @ff —open.

A family C of subsets of a space (X,7) is said to have the countable

intersection property if the intersection of any countable subcollection of { is
nonempty.

Theorem 3.3.
For a space (X,7), the following properties are equivalent

6) (X,7) is f—Lindeldf.
(i) Every family {4, :a €A} of wff— closed sets which has the
countable intersection property has a non-empty intersection.
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Proof.
(i) = (ii) First, let (X,7) be a f— Lindelof space and {4 :a € A} be a
family of @f —closed sets having the countable intersection property. We
show that () 4, # ¢ . Suppose that () A, =¢, then {X -4 :a €A} isa

aeA aelA
collection of @f —open sets and U(X -4, )=X-NA4, =X-¢=X.
aelA aeA

Since (X,7) is f—Lindelof and {X — A4, :a € A} is an wff —open cover
of X , there exists a countable subset A of A such that
X -4, :aeA}=X . Therefore (1 4,= N(X—-(X—-4,))=X-

aeA, ael,

(U (X —-4,))=X—-X =¢. This contradicts the fact that {4, : @ € A} has

aeA,

the countable intersection property. Therefore (| 4, #¢.

aeA
(1) > (1) Let {U,:aeA} be any wf— open cover of X . Then
{X-U, :a €A} is afamily of @f —closedsetsand (1(X -U, )=X—

aeA

(UU,)=X—-X =¢. By hypothesis, there is some countable subcollection

ael

X-U, ;.. X =U, ... of this collection such that (1(X ~U, )=¢; hence

ieN

UU, =UX-(X-U,)=X-NX-U,)=X . Thus, U,,..,
k£ keN k keN k

keN “
U, ,... is acountable subcover of {U_ :a € A}.

ay

Theorem 3.4.
If (X,7) is B — Lindel6f and B is f— closed in (X,7), then B is
S — Lindelof relative to X .

Proof.
Let {4, :a €A} be any cover of B by ff—open sets of X . Since B is

S —closed, X —B is f—open and {4,:a € A}U(X —B) is a f— open
cover of X . Since (X,7) is f — Lindel6f, there exists a countable subcover
for X, say, {4, ,4, ;.. 4, ,-..(X —B)}. Therefore, B< U 4, and hence

keN

U A, forms a countable subcover of U A4, for B . Therefore, B is
keN k aeA

[ — Lindelf relative to X .
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A topological space (X,7) is called a P—space (Balasubramanian
1982) if every countable intersection of open sets is open in (X, 7).

Theorem 3.5.
Let (X,7) be a Hausdorff P —space and 4 [ — Lindeldf relative to X . If

x & A, then there exist disjoint open sets U and V' containing x and 4,
respectively.

Proof.
Since X is a T, —space, for each a € A4, there exist disjoint open sets V,

and U_ containing @ and x, respectively. The family {V :a € A} forms
an open cover of A and hence forms a £ —open cover of 4. Since 4 is

f— Lindelof relative to X , there exists a countable subcover
V..V V . For each V,

al®>” a2>***> " an>*** ak >

k=1,2,3,...,0 , there exists a

corresponding ka and hence (U W = U is open and contains x. But U
v i) a

does not intersect any ¥, ,1 <k <oo. The reason is that if UV, # ¢, for
some 1<i<oo, then U, \V,#¢ since UcU, ,k=1,2,3,., 0.

However, this is contrary to the way ka and Vak were chosen. Thus if we

define V=UV,,then UNV =¢,xeU and ACV .
k=1

Theorem 3.6.
Let (X,7) be a Hausdorff P—space. If A is £ — Lindelof relative to X,

then A isclosedin (X,7).

Proof.
Let A4 be [ — Lindeldf relative to X and x ¢ 4. By Theorem 3.5, there

exist open sets U and V' containing x and A, respectively, such that
UNV=¢ . Thus UNA=¢ . Therefore, U < X — A , which implies
X — A is open. Therefore A4 is closed in (X,7).
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4. SEPARATION AXIOMS
Definition 4.1.
A space (X,7) is said to be @wf—T, if for each two distinct points
x,y € X, there exist two @wf —open sets U and V' such that xeU,y eV
and UNV =¢.
Note that every T, —space is @ff —T, but the converse is not true.
For example, consider the space (N,7,,,), where N is the set of all natural

numbers and 7, is the cofinite topology. Since every subset of (N,7,,) is

of —open, (N,7,,) is @f—T,,but (N,7,,,) isnota 7, —space.

Theorem 4.2.
For any space (X,7), the following properties are equivalent:

(i) (X,7)is 0f—T,.
(i) Let xe X . Foreach y e X —{x}, there exists an wff —open set U
containing x such that y ¢ wfCI(U).
(iii)  For each xe X , ({wpBCI(U):Uis an @f —open set containing
x}={x}.

Proof.

(1) > (i1) Suppose that (X,7) is @f—T,. Then for any distinct points
X,y , there exist two disjoint @f —open sets U and V' containing x and
y , respectively. Thus Uc X -V and hence wfCI(U)c X -V .
Therefore, y ¢ wfCI(U).

(i1)) > (iii) Let xe X and y € X —{x} . Then by (ii)) y ¢ ®BCI(U) for
some @f —open set U containing x . Therefore, ({wBCI(U):U is an
of —open set containing x} < {x} .

(ii1)) > (1) Suppose that x,y € X and x#y . Then there exists an
@f — open set U containing x such that y ¢ wfCI(U) . Now take
V=X-wpCI(U) , then V is @f— open. Hence xeU,yeV and
UV =¢. Therefore, (X,7) is of—-T,.
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Definition 4.3.
A space (X,7) is said to be @wf —regular if each pair of a point and a closed

set not containing the point can be separated by disjoint @/ —open sets.

Theorem 4.4.
For a space (X,7), the following properties are equivalent:

(1)  (X,7) is wf —regular.

(i)  For each x € X and each open set U containing x, there exists an
wff —openset V suchthat xeV c ofCI(V)cU .

(iii)  For each closed set F , (WwBCI(V):F cV,V is wf —open}
=F.

(iv)  For each subset 4 of (X,7) and each open set U in (X,7) with
ANU # ¢, there exists an wff —open set V' such that V(14 # ¢
and wfCI(V)cU .

(v)  For each non-empty set 4 and each closed set /' with A(1F =¢,
there exist two disjoint @ff — open sets U and V' such that
ANU #¢ and F V.

Proof.
(1) > (i1) Let U be an open set and x €U . Then X —U is closed in X

and x ¢ X —U . By (i), there exist two disjoint @f —open sets V| and V,
such that (X -U)cV, and x €V, . Therefore, V, = (X —V;) and hence
xelV,caofCl(V,)c X-V,cU.\

(1)) = (i1i1)) Let F be a closed set and x ¢ /. By (ii), there exists an
wff —open set V' such that x eV < ofCI(V) < (X —F). Now, we take
U=X-wpCIV), then U is wf—open, FcU and UUV =¢ . By
Theorem 2.19, x ¢ wfCI(U). Thus ({wBC(V): F <V ,Vis wf —open}
c F . And the converse is obvious.

(ii1)) > (iv) Let A be a subset of X and U be an open set such that
xeU()A.Then x ¢ (X —U) and by (iii), there exists an @/ —open set V
such that X —U <V and x ¢ @fCI(V). Now take M =X —wfCI(V),
then M is an @f— open set containing x . Thus, A(VM #¢ and
M < X -V and hence wffCI(M)c X -V cU.
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(iv) = (v) Suppose that 4 # ¢ and F' is a closed set such that A\ F =¢.
Then (X —F) is open and (X —F)(N1A#¢ . By (iv), there exists an
@f —open set U such that AU # ¢ and wfCI(U)c (X —F). Now if
we take V=X-@pfCI(U) , then V is wff— open, FcV and
UNV=¢.

(v) > (1) Suppose F' is a closed set such that x € X —F . By (v), there
exist two disjoint @ff —open sets U and V' such that xeU and F V.
Thus, (X,7) is @f —regular.

Definition 4.5.
A space (X,7) is said to be ®ff —normal if every two disjoint closed sets

can be separated by @ff —open sets.

Theorem 4.6.
Aspace (X,7) is @wff —normal if and only if for each closed set F' and any

open set V' containing F', there exists an @f — open set U such that
FcUcwpCl(U)cV .

Proof.
NECESSITY. Let F' be a closed set and V' any open set containing F .
Since (X —V) and F are closed sets such that (X —V)(1F=¢ , by

assumption there exist two disjoint @f —open sets U, and U, such that
(X-V)cU, and FcU, . Since U NU, =¢,U NapCI(U,)=¢ and
hence wfCI(U,)c X -U,cV .Thus F cU, c ofCI(U,) V.
SUFFICIENCY. Let 4, and A4, be any two disjoint closed sets. Now
X — A4, is an open set containing 4, and by assumption there exists an
@} —open set B such that 4 < Bc wfCIl(B)c X —A,. Now we take
U, =B and U, = X —wfCI(B), then U, and U, are disjoint @f — open
sets such that 4, c U, and 4, c U, . Therefore, (X,7) is @ff —normal.
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