MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

Journal homepage: http://einspem.upm.edu.my/journal

On $\omega \beta$-Open Sets

${ }^{1 *}$ Heyam Hussein Aljarrah, ${ }^{1}$ Mohd. Salmi Md. Noorani and ${ }^{2}$ Takashi Noiri
${ }^{1}$ School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Selangor, Malaysia
${ }^{2}$ 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-Ken, 869-5142 Japan
E-mail: hiamaljarah@yahoo.com
*Corresponding author

Abstract

In this paper we introduce a new class of sets called $\omega \beta$ - open sets which contains the class of ω - open and β - open sets. Here we carry out a study of the properties of $\omega \beta-$ open sets.

Keywords: ω - open, β - open, $\omega \beta$ - open, $\beta-$ Lindelöf, $\omega \beta-\mathrm{T}_{2}, \omega \beta-$ regular.

1. INTRODUCTION

Throughout this work a space will always mean a topological space with no separation axioms assumed, unless otherwise stated. Let (X, τ) be a space and A a subset of X. By $\operatorname{Int}(A)$ and $C l(A)$, we denote the interior of A and the closure of A, respectively, in (X, τ). A point $x \in X$ is called a condensation point of A if for each open set U containing x, the set $U \bigcap A$ is uncountable. A is said to be ω-closed (Hdeib (1982)) if it contains all its condensation points. The complement of an ω-closed set is
said to be ω - open. Note that a subset A of a space (X, τ) is ω-open (Al-Zoubi and Al-Nashef (2003)) if and only if for each $x \in A$ there exists an open set U containing x such that $U-A$ is countable. The family of all ω - open subsets of a space (X, τ), denoted by $\omega O(X, \tau)$, forms a topology on X, denoted by τ_{ω}, finer than τ. Several characterizations of ω - closed subsets were proved in Hdeib (1982).

A subset A of a space (X, τ) is said to be b-open (Andrijevic (1996)) (resp. β-open (Monesf et al. (1983)) or semi-preopen (Andrijević (1986)) if $A \subseteq \operatorname{Int}(C l(A)) \cap C l(\operatorname{Int}(A))($ resp. $A \subseteq C l(\operatorname{Int}(\operatorname{Cl}(A))))$. The complement of a β - open set is called a β - closed set. The set of all β - open subset in (X, τ) will be denoted by $\beta O(X, \tau)$.

In 2008, Noiri et al. introduced the notion of ωb-open sets. They defined a subset A of a space (X, τ) to be ωb-open if for every $x \in A$ there exists a b-open set U in (X, τ) containing x such that $U-A$ is countable. The family of all ωb-open subsets of (X, τ) will be denoted by $\omega b O(X, \tau)$.

In this paper, we introduce the notion of $\omega \beta$-open sets which is a new generalization of both ω-open sets and β - open sets. We investigate some properties of $\omega \beta$-open sets. Moreover, by using $\omega \beta$-open sets, we define and investigate β - Lindelöf spaces, $\omega \beta-\mathrm{T}_{2}$ spaces, $\omega \beta$ - regular spaces, and $\omega \beta$ - normal spaces.

Now we recall some known results which will be used in the sequel.
Lemma 1.1. (Andrijevic (1986)).
If U is open and A is β-open in a space (X, τ), then $U \bigcap A$ is β - open in (X, τ).

Theorem 1.2. (Navalagi (2002)).
Let (X, τ) be a space, $A \subset Y \subset X$ and Y be β-open in (X, τ). Then A is β-open in (X, τ) if and only if A is β-open in the subspace $\left(Y, \tau_{Y}\right)$.

2. $\omega \beta$-OPEN SETS

Definition 2.1.

A subset A of a space (X, τ) is said to be $\omega \beta$-open if for every $x \in A$, there exists a β-open set U containing x such that $U-A$ is countable. The family of all $\omega \beta$ - open subsets of (X, τ) will be denoted by $\omega \beta O(X, \tau)$.

Note that if X is a countable set then every subset of X is $\omega \beta$ - open in (X, τ).

Theorem 2.2.

For any space (X, τ), the following properties hold:
(i) Every ωb-open set is $\omega \beta$-open.
(ii) Every β-open set is $\omega \beta$-open.

The proof follows easily from Definition 2.1.

The converses need not be true as shown by the following examples.

Example 2.3.

Let $X=\{1,2,3\}, \tau=\{X, \phi,\{1\},\{2\},\{1,2\}\}$, then $\{3\}$ is $\omega-$ open in (X, τ), but it is not β-open.

Example 2.4.

Let $X=\mathbb{R}$ with the usual topology τ_{u} and let $A=\mathbb{Q}$ be the set of all rational numbers. Then, since $A \subset \operatorname{Int}(\operatorname{Cl}(A)), A$ is $b-$ open in (X, τ), but it is not ω-open.

Example 2.5.

Let $X=\mathbb{R}$ with the usual topology τ_{u} and let $A=[0,1) \cap \mathbb{Q}$. Then, by Lemma 3.5 of Noiri (1984) $C l(\operatorname{Int}(C l(A)))=C l[\operatorname{Int}(C l([0,1))) \cap \operatorname{Int}(C l($
$\mathbb{Q}))]=\operatorname{Cl}[(0,1) \cap X]=[0,1] \supset A$. Therefore, A is β-open, but it is not ωb - open in (X, τ) by Example 2.10 of Noiri (2008).

Lemma 2.6.

A subset A of a space (X, τ) is $\omega \beta$ - open if and only if for every $x \in A$, there exists a β - open set U and a countable subset C such that $x \in U-C \subseteq A$.

Proof.

Let A be $\omega \beta$-open and $x \in A$. Then there exists a β - open set $U \subseteq X$ containing x such that $U-A$ is countable. Hence U is β - open, $C=U-A$ is the countable set and $U-C \subseteq A$. The converse is obvious.

Proposition 2.7.

The intersection of an $\omega \beta$-open set and an ω-open set is $\omega \beta$-open.

Proof.

Let A be an $\omega \beta$-open set and B an ω-open set. Then there exist a β-open set U_{A} containing x such that $U_{A}-A$ is countable and an open set U_{B} containing x such that $U_{B}-B$ is countable. By Lemma 1.1, $U_{A} \cap U_{B}$ is a β - open set containing x and $\left(U_{A} \cap U_{B}\right)-(A \cap B)$ $\subseteq\left(U_{A}-A\right) \cap\left(U_{B}-B\right)$ and hence $\left(U_{A} \cap U_{B}\right)-(A \cap B)$ is a countable set. Therefore $(A \cap B)$ is an $\omega \beta$ - open set.

Corollary 2.8 .

The intersection of an $\omega \beta$-open set and an open set is $\omega \beta$ - open.
The intersection of a β-open set and an $\omega \beta$-open set is not always $\omega \beta$-open as the following example shows. Thus, the intersection of two $\omega \beta$-open sets need not be $\omega \beta$-open.

Example 2.9.

Let $X=\mathbb{R}$ with the cocountable topology $\tau=\tau_{c o c}$. Let $A=(0,1]$ and $B=[1,2)$. Then A and B are $\omega \beta$-open, but $A \cap B$ is not $\omega \beta$-open, since each β-open containing 1 is uncountable.

Proposition 2.10.

The union of any family of $\omega \beta$ - open sets is $\omega \beta$ - open.

Proof.

If $\left\{A_{\alpha}: \alpha \in \Delta\right\}$ is a collection of $\omega \beta$-open subsets of X, then for every $x \in \bigcup_{\alpha \in \Delta} A_{\alpha}, x \in A_{\alpha_{o}}$ for some $\alpha_{\circ} \in \Delta$. Hence there exists a β - open subset U containing x such that $U-A_{\alpha_{o}}$ is countable. Hence $U-\bigcup_{\alpha \in \Delta} A_{\alpha}$ is countable. This shows that $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is $\omega \beta$-open.

Definition 2.11.

The topology generated by $\omega \beta O(X, \tau)$ is defined as $T(\omega \beta O(X, \tau))=$ $\{V \subseteq X: V \bigcap S \in \omega \beta O(X, \tau)$ whenever $S \in \omega \beta O(X, \tau)\}$.

Proposition 2.12.

$T(\omega \beta O(X, \tau))$ is a topology on X larger than τ.

Proof.

We first show that $T(\omega \beta O(X, \tau))$ is a topology on X. It is clear, by Definition 2.11, $\phi, X \in T(\omega \beta O(X, \tau))$. Now, let $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ be a collection of $\omega \beta$ - open sets in (X, τ), then for each $\alpha \in \Delta, U_{\alpha} \cap S$ is $\omega \beta$-open in (X, τ) whenever S is $\omega \beta$-open in (X, τ). By Proposition 2.10, $\left(\bigcup_{\alpha \in \Delta} U_{\alpha}\right) \cap S=\bigcup_{\alpha \in \Delta}\left(U_{\alpha} \cap S\right) \in \omega \beta O(X, \tau)$ whenever $S \in \omega \beta O(X, \tau)$. Thus by Definition 2.11, $\bigcup_{\alpha \in \Delta} U_{\alpha} \in T(\omega \beta O(X, \tau))$. Finally, let $U_{1}, U_{2} \in T($ $\omega \beta O(X, \tau))$ and S be any $\omega \beta$ - open set. Then $U_{1} \cap S \in \omega \beta O(X, \tau)$ and hence $\left(U_{1} \cap U_{2}\right) \cap S=U_{2} \cap\left(U_{1} \cap S\right) \in \omega \beta O(X, \tau)$. Therefore, $U_{1} \cap U_{2} \in T(\omega \beta O(X, \tau))$. This proves that $T(\omega \beta O(X, \tau))$ is a topology on X. To show $\tau \subseteq T(\omega \beta O(X, \tau))$, let $U \in \tau$. Then by Corollary 2.8 $U \cap S \in \omega \beta O(X, \tau)$ whenever $S \in \omega \beta O(X, \tau)$. Therefore, $U \in T(\omega \beta O$ (X, τ)).

Recall that the topology generated by $\beta O(X, \tau)$ (Ganster and Andrijević (1988)) is defined as $T(\beta O(X, \tau))=\{V \subseteq X: V \cap S \in \beta O$ (X, τ) whenever $S \in \beta O(X, \tau)$ whenever $S \in \beta O(X, \tau)\}$. In Ganster and Andrijević (1988), $T(\beta O(X, \tau))$ is denoted by T_{δ}. But, we use the notation $T(\beta O(X, \tau))$ instead of T_{δ}.

Theorem 2.13.
For a topological space $(X, \tau), \omega T(\beta O(X, \tau)) \subseteq T(\omega \beta O(X, \tau))$, the converse is true if every β - open set is open in (X, τ).

Proof.

Let $A \in \omega T(\beta O(X, \tau))$. We show that $A \cap V \in \omega \beta O(X, \tau)$ for every $V \in \omega \beta O(X, \tau)$. Let $x \in A \cap V$, then $x \in A$ and $x \in V$. Then there exists $O \in T(\beta O(X, \tau))$ such that $x \in O$ and $O-A$ is countable. And there exists $B \in \beta O(X, \tau)$ such that $x \in B$ and $B-V$ is countable. Since $O \in T(\beta O(X, \tau)), x \in O \cap B \in \beta O(X, \tau)$. On the other hand, $(O \cap B)-$ $(A \cap V) \subset(O-A) \cup(B-V)$ and $\quad(O-A) \cup(B-V) \quad$ is countable. Therefore, $(O \cap B)-(A \cap V)$ is countable and hence $A \cap V \in \omega \beta O(X, \tau)$. Conversely, Let $A \in T(\omega \beta O(X, \tau))$, So $A \cap V \in \omega \beta O(X, \tau)$ for every $V \in \omega \beta O(X, \tau)$. Let $x \in A \cap V$, then there exists $O \in \beta O(X, \tau)$ containing x such that $O-(A \cap V)$ is countable. By assumption, $O \in T(\beta O(X, \tau))$ such that $(O-A)$ is countable. Hence, $A \in$ $\omega T(\beta O(X, \tau))$.

Theorem 2.14.

Let $\left(Y, \tau_{Y}\right)$ be a subspace of (X, τ) and $A \subseteq Y$:
(i) If A is $\omega \beta$-open in (X, τ) and Y is open, then A is $\omega \beta$-open in $\left(Y, \tau_{Y}\right)$.
(ii) If A is $\omega \beta$-open in $\left(Y, \tau_{Y}\right)$ and Y is β-open, then A is $\omega \beta$ - open in (X, τ).

Proof.

(i) Let A be $\omega \beta$-open in (X, τ). For every $x \in A$, there exists a β-open set U in (X, τ) containing x such that $U-A$ is countable. If $U \subseteq Y$ by

Theorem $1.2 U$ is β - open in $\left(Y, \tau_{Y}\right)$ containing x and hence A is $\omega \beta$ - open in $\left(Y, \tau_{Y}\right)$. If U is not contained in Y, set $U_{\circ}=U \bigcap Y$. Then by Lemma 1.1 U_{\circ} is β-open in $\left(Y, \tau_{Y}\right)$ and $U_{\circ}-A$ is countable. Therefore, A is $\omega \beta$ - open in $\left(Y, \tau_{Y}\right)$.
(ii) Let A be $\omega \beta$-open in $\left(Y, \tau_{Y}\right)$. Then for every $x \in A$, there exists a β - open set U in $\left(Y, \tau_{Y}\right)$ containing x such that $U-A$ is countable. Hence by Theorem 1.2, A is $\omega \beta$-open in (X, τ).

In Theorem 2.14, we can not delate the assumption that Y is β-open in (X, τ). To see that consider the space $\left(\mathbb{R}, \tau_{c o c}\right)$ and the subset $Y=\mathbb{Q}$ of \mathbb{R} and take a subset $A=\{1\}$ of Y. Hence A is $\omega \beta$-open in $\left(Y, \tau_{Y}\right)$ but A is not $\omega \beta$-open in $\left(\mathbb{R}, \tau_{\text {coc }}\right)$.

Corollary 2.15.

Let $\left(Y, \tau_{Y}\right)$ be a subspace of $(X, \tau), A \subseteq Y$ and Y be an open set. Then A is $\omega \beta$-open in (X, τ) if and only if A is $\omega \beta$-open in $\left(Y, \tau_{Y}\right)$.

Definition 2.16.

A subset F of a topological space (X, τ) is said to be $\omega \beta$ - closed if $X-F$ is $\omega \beta$-open. The family of all $\omega \beta$-closed subsets of (X, τ) will be denoted by $\omega \beta C(X, \tau)$.

Proposition 2.17.

Let (X, τ) be a space and $C \subseteq X$. If C is $\omega \beta-\operatorname{closed}$ in (X, τ), then $C \subseteq K \bigcap B$ for some β - closed subset K and a countable subset B.

Proof.

If C is $\omega \beta$ - closed, then $X-C$ is $\omega \beta$ - open and hence for every $x \in X-C$, there exist a β - open set U in (X, τ) containing x and a countable set B such that $U-B \subseteq X-C$, thus $C \subseteq(X-U) \cup B$. Let $K=X-U$, then K is a β - closed set such that $C \subseteq K \bigcup B$.

Remark 2.18.

Let (X, τ) be a space and A, B subsets of X. Then the following properties hold.
(i) The intersection of any family of $\omega \beta$ - closed sets in (X, τ) is $\omega \beta$ - closed.
(ii) Every $\omega \beta$ - closed set and every β - closed set in (X, τ) are $\omega \beta$ - closed.
(iii) If A is ω - closed and B is $\omega \beta$ - closed, then $A \bigcup B$ is $\omega \beta$ - closed.

The intersection of all $\omega \beta$-closed sets of X containing A is called the $\omega \beta$-closure of A and is denoted by $\omega \beta \operatorname{Cl}(A)$. And the union of all $\omega \beta$ - open sets of X contained in A is called the $\omega \beta$-interior and is denoted by $\omega \beta \operatorname{Int}(A)$.

Theorem 2.19.

Let A be a subset of a space (X, τ). Then $x \in \omega \beta C l(A)$ if and only if for every $\omega \beta$ - open set U containing $x, A \cap U \neq \phi$.

Proof.

First, suppose that $x \in \omega \beta C l(A)$ and U is any $\omega \beta$ - open containing x such that $A \cap U=\phi$. Then $(X-U)$ is an $\omega \beta-$ closed set containing A. Thus, $\omega \beta C l(A) \subseteq(X-U)$. Then $x \notin \omega \beta C l(A)$, which is a contradiction. Conversely, Suppose $x \notin \omega \beta C l(A)$, there exists an $\omega \beta$-closed set V such that $A \subseteq V$ and $x \notin V$. Then $X-V$ is an $\omega \beta$ - open set containing x and $A \cap(X-V)=\phi$.

3. β-LINDELÖF SPACES

Definition 3.1.

(i) A space (X, τ) is said to be β-Lindelöf if every β-open cover of X has a countable subcover.
(ii) A subset A of a space (X, τ) is said to be β-Lindelöf relative to X if every cover of A by β - open sets of (X, τ) has a countable subcover.

Theorem 3.2.

For a space (X, τ), the following properties are equivalent:
(i) $\quad(X, \tau)$ is β-Lindelöf.
(ii) Every $\omega \beta$ - open cover of X has a countable subcover.

Proof.

(i) \rightarrow (ii) Let $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ be an $\omega \beta$ - open cover of X. For each $x \in X$ there exists $\alpha_{(x)} \in \Delta$ such that $x \in U_{\alpha_{(x)}}$. Since $U_{\alpha_{(x)}}$ is $\omega \beta$-open, there exists a β-open set $V_{\alpha_{(x)}}$ such that $x \in V_{\alpha_{(x)}}$ and $V_{\alpha_{(x)}}-U_{\alpha_{(x)}}$ is countable. The family $\left\{V_{\alpha_{(x)}}: x \in X\right\}$ is a β - open cover of X and (X, τ) is β - Lindelöf. There exists a countable subset, says $\alpha_{\left(x_{1}\right)}, \alpha_{\left(x_{2}\right)} \ldots . \alpha_{\left(x_{n}\right)} \ldots$. such that $X=\bigcup\left\{V_{\alpha_{\left(x_{i}\right)}}: i \in \mathbb{N}\right\}$. Now, we have $X=\left\{\bigcup_{i \in \mathbb{N}}\left(V_{\alpha_{\left(x_{i}\right)}}-U_{\alpha_{\left(x_{i}\right)}}\right)\right\}$ $\bigcup\left\{\bigcup_{i \in \mathbb{N}} U_{\alpha_{\left(x_{i}\right)}}\right\}$. For each $\alpha_{\left(x_{i}\right)}, V_{\alpha_{\left(x_{i}\right)}}-U_{\alpha_{\left(x_{i}\right)}}$ is a countable set and there exists a countable subset $\Delta_{\alpha_{\left(x_{i}\right)}}$ of Δ such that $V_{\alpha_{\left(x_{i}\right)}}-U_{\alpha_{\left(x_{i}\right)}} \subseteq \bigcup\left\{U_{\alpha}: \alpha \in \Delta_{\alpha_{\left(x_{i}\right)}}\right\}$. Therefore, we have $X \subseteq\left[\bigcup_{i \in \mathbb{N}}\left(\bigcup\left\{U_{\alpha}: \alpha \in \Delta_{\alpha_{\left(x_{i}\right)}}\right\}\right) \bigcup\left(\bigcup_{i \in \mathbb{N}} U_{\alpha_{\left(x_{i}\right)}}\right)\right]$.
(ii) \rightarrow (i) The proof is obvious since every β - open set is $\omega \beta$-open.

A family ζ of subsets of a space (X, τ) is said to have the countable intersection property if the intersection of any countable subcollection of ζ is nonempty.

Theorem 3.3.

For a space (X, τ), the following properties are equivalent
(i) $\quad(X, \tau)$ is β-Lindelöf.
(ii) Every family $\left\{A_{\alpha}: \alpha \in \Delta\right\}$ of $\omega \beta$ - closed sets which has the countable intersection property has a non-empty intersection.

Proof.

(i) \rightarrow (ii) First, let (X, τ) be a β-Lindelöf space and $\left\{A_{\alpha}: \alpha \in \Delta\right\}$ be a family of $\omega \beta$-closed sets having the countable intersection property. We show that $\bigcap_{\alpha \in \Delta} A_{\alpha} \neq \phi$. Suppose that $\bigcap_{\alpha \in \Delta} A_{\alpha}=\phi$, then $\left\{X-A_{\alpha}: \alpha \in \Delta\right\}$ is a collection of $\omega \beta$ - open sets and $\bigcup_{\alpha \in \Delta}\left(X-A_{\alpha}\right)=X-\bigcap_{\alpha \in \Delta} A_{\alpha}=X-\phi=X$. Since (X, τ) is β - Lindelöf and $\left\{X-A_{\alpha}: \alpha \in \Delta\right\}$ is an $\omega \beta$ - open cover of X, there exists a countable subset Δ 。 of Δ such that $\bigcup\left\{X-A_{\alpha}: \alpha \in \Delta_{\circ}\right\}=X$. Therefore $\bigcap_{\alpha \in \Delta_{o}} A_{\alpha}=\bigcap_{\alpha \in \Delta_{o}}\left(X-\left(X-A_{\alpha}\right)\right)=X-$ $\left(\bigcup_{\alpha \in \Delta_{0}}\left(X-A_{\alpha}\right)\right)=X-X=\phi$. This contradicts the fact that $\left\{A_{\alpha}: \alpha \in \Delta\right\}$ has the countable intersection property. Therefore $\bigcap_{\alpha \in \Delta} A_{\alpha} \neq \phi$.
(ii) \rightarrow (i) Let $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ be any $\omega \beta$ - open cover of X. Then $\left\{X-U_{\alpha}: \alpha \in \Delta\right\}$ is a family of $\omega \beta$ - closed sets and $\bigcap_{\alpha \in \Delta}\left(X-U_{\alpha}\right)=X-$ $\left(\bigcup_{\alpha \in \Delta} U_{\alpha}\right)=X-X=\phi$. By hypothesis, there is some countable subcollection $X-U_{\alpha_{1}}, \ldots, X-U_{\alpha_{n}}, \ldots$ of this collection such that $\bigcap_{i \in \mathbb{N}}\left(X-U_{\alpha_{i}}\right)=\phi$; hence $\bigcup_{k \in \mathbb{N}} U_{\alpha_{k}}=\bigcup_{k \in \mathbb{N}}\left(X-\left(X-U_{\alpha_{k}}\right)\right)=X-\bigcap_{k \in \mathbb{N}}\left(X-U_{\alpha_{k}}\right)=X$. Thus, $U_{\alpha_{1}}, \ldots$, $U_{\alpha_{n}}, \ldots$ is a countable subcover of $\left\{U_{\alpha}: \alpha \in \Delta\right\}$.

Theorem 3.4.

If (X, τ) is β - Lindelöf and B is β - closed in (X, τ), then B is β - Lindelöf relative to X.

Proof.

Let $\left\{A_{\alpha}: \alpha \in \Delta\right\}$ be any cover of B by β - open sets of X. Since B is β - closed, $X-B$ is β - open and $\left\{A_{\alpha}: \alpha \in \Delta\right\} \bigcup(X-B)$ is a β-open cover of X. Since (X, τ) is β-Lindelöf, there exists a countable subcover for X, say, $\left\{A_{\alpha_{1}}, A_{\alpha_{2}}, \ldots, A_{\alpha_{k}}, \ldots(X-B)\right\}$. Therefore, $B \subset \bigcup_{k \in \mathbb{N}} A_{\alpha_{k}}$ and hence $\bigcup_{k \in \mathbb{N}} A_{\alpha_{k}}$ forms a countable subcover of $\bigcup_{\alpha \in \Delta} A_{\alpha}$ for B. Therefore, B is β - Lindelf relative to X.

A topological space (X, τ) is called a P-space (Balasubramanian 1982) if every countable intersection of open sets is open in (X, τ).

Theorem 3.5.

Let (X, τ) be a Hausdorff P-space and $A \beta$-Lindelöf relative to X. If $x \notin A$, then there exist disjoint open sets U and V containing x and A, respectively.

Proof.

Since X is a T_{2}-space, for each $a \in A$, there exist disjoint open sets V_{a} and $U_{x_{a}}$ containing a and x, respectively. The family $\left\{V_{a}: a \in A\right\}$ forms an open cover of A and hence forms a β-open cover of A. Since A is β - Lindelöf relative to X, there exists a countable subcover $V_{a 1}, V_{a 2}, \ldots, V_{a n}, \ldots$. For each $V_{a k}, k=1,2,3, \ldots, \infty$, there exists a corresponding $U_{x_{a k}}$ and hence $\bigcap_{k=1}^{\infty} U_{x_{a k}}=U$ is open and contains x. But U does not intersect any $V_{a k}, 1 \leq k \leq \infty$. The reason is that if $U \bigcap V_{a i} \neq \phi$, for some $1 \leq i \leq \infty$, then $U_{x_{a i}} \cap V_{a i} \neq \phi$ since $U \subseteq U_{x_{a k}}, k=1,2,3, \ldots, \infty$. However, this is contrary to the way $U_{x_{a k}}$ and $V_{a_{k}}$ were chosen. Thus if we define $V=\bigcup_{k=1}^{\infty} V_{a k}$, then $U \bigcap V=\phi, x \in U$ and $A \subseteq V$.

Theorem 3.6.

Let (X, τ) be a Hausdorff P-space. If A is β-Lindelöf relative to X, then A is closed in (X, τ).

Proof.

Let A be β-Lindelöf relative to X and $x \notin A$. By Theorem 3.5, there exist open sets U and V containing x and A, respectively, such that $U \cap V=\phi$. Thus $U \bigcap A=\phi$. Therefore, $U \subseteq X-A$, which implies $X-A$ is open. Therefore A is closed in (X, τ).

4. SEPARATION AXIOMS

Definition 4.1.

A space (X, τ) is said to be $\omega \beta-T_{2}$ if for each two distinct points $x, y \in X$, there exist two $\omega \beta$ - open sets U and V such that $x \in U, y \in V$ and $U \cap V=\phi$.

Note that every T_{2}-space is $\omega \beta-T_{2}$ but the converse is not true. For example, consider the space $\left(\mathbb{N}, \tau_{\text {cof }}\right)$, where \mathbb{N} is the set of all natural numbers and $\tau_{\text {cof }}$ is the cofinite topology. Since every subset of $\left(\mathbb{N}, \tau_{c o f}\right)$ is $\omega \beta$-open, $\left(\mathbb{N}, \tau_{c o f}\right)$ is $\omega \beta-T_{2}$, but $\left(\mathbb{N}, \tau_{c o f}\right)$ is not a T_{2} - space.

Theorem 4.2.

For any space (X, τ), the following properties are equivalent:
(i) (X, τ) is $\omega \beta-T_{2}$.
(ii) Let $x \in X$. For each $y \in X-\{x\}$, there exists an $\omega \beta$-open set U containing x such that $y \notin \omega \beta C l(U)$.
(iii) For each $x \in X, \bigcap\{\omega \beta C l(U): U$ is an $\omega \beta$ - open set containing $x\}=\{x\}$.

Proof.

(i) \rightarrow (ii) Suppose that (X, τ) is $\omega \beta-T_{2}$. Then for any distinct points x, y, there exist two disjoint $\omega \beta$-open sets U and V containing x and y, respectively. Thus $U \subseteq X-V$ and hence $\omega \beta C l(U) \subseteq X-V$. Therefore, $y \notin \omega \beta C l(U)$.
(ii) \rightarrow (iii) Let $x \in X$ and $y \in X-\{x\}$. Then by (ii) $y \notin \omega \beta C l(U)$ for some $\omega \beta$ - open set U containing x. Therefore, $\cap\{\omega \beta C l(U): U$ is an $\omega \beta$-open set containing $x\} \subset\{x\}$.
(iii) \rightarrow (i) Suppose that $x, y \in X$ and $x \neq y$. Then there exists an $\omega \beta$ - open set U containing x such that $y \notin \omega \beta C l(U)$. Now take $V=X-\omega \beta C l(U)$, then V is $\omega \beta-$ open. Hence $x \in U, y \in V$ and $U \bigcap V=\phi$. Therefore, (X, τ) is $\omega \beta-T_{2}$.

Definition 4.3.

A space (X, τ) is said to be $\omega \beta$-regular if each pair of a point and a closed set not containing the point can be separated by disjoint $\omega \beta$-open sets.

Theorem 4.4.

For a space (X, τ), the following properties are equivalent:
(i) (X, τ) is $\omega \beta$-regular.
(ii) For each $x \in X$ and each open set U containing x, there exists an $\omega \beta$ - open set V such that $x \in V \subseteq \omega \beta C l(V) \subseteq U$.
(iii) For each closed set $F, \bigcap\{\omega \beta C l(V): F \subseteq V, V$ is $\omega \beta$-open $\}$ $=F$.
(iv) For each subset A of (X, τ) and each open set U in (X, τ) with $A \cap U \neq \phi$, there exists an $\omega \beta$ - open set V such that $V \bigcap A \neq \phi$ and $\omega \beta C l(V) \subseteq U$.
(v) For each non-empty set A and each closed set F with $A \cap F=\phi$, there exist two disjoint $\omega \beta$ - open sets U and V such that $A \bigcap U \neq \phi$ and $F \subseteq V$.

Proof.

(i) \rightarrow (ii) Let U be an open set and $x \in U$. Then $X-U$ is closed in X and $x \notin X-U$. By (i), there exist two disjoint $\omega \beta$-open sets V_{1} and V_{2} such that $(X-U) \subseteq V_{1}$ and $x \in V_{2}$. Therefore, $V_{2} \subseteq\left(X-V_{1}\right)$ and hence $x \in V_{2} \subseteq \omega \beta C l\left(V_{2}\right) \subseteq X-V_{1} \subseteq U . \ \backslash$
(ii) \rightarrow (iii) Let F be a closed set and $x \notin F$. By (ii), there exists an $\omega \beta$ - open set V such that $x \in V \subseteq \omega \beta C l(V) \subseteq(X-F)$. Now, we take $U=X-\omega \beta C l(V)$, then U is $\omega \beta$ - open, $F \subset U$ and $U \bigcup V=\phi$. By Theorem 2.19, $x \notin \omega \beta C l(U)$. Thus $\bigcap\{\omega \beta C(V): F \subseteq V, V$ is $\omega \beta$-open $\}$ $\subseteq F$. And the converse is obvious.
(iii) \rightarrow (iv) Let A be a subset of X and U be an open set such that $x \in U \bigcap A$. Then $x \notin(X-U)$ and by (iii), there exists an $\omega \beta$-open set V such that $X-U \subseteq V$ and $x \notin \omega \beta C l(V)$. Now take $M=X-\omega \beta C l(V)$, then M is an $\omega \beta$ - open set containing x. Thus, $A \bigcap M \neq \phi$ and $M \subseteq X-V$ and hence $\omega \beta C l(M) \subseteq X-V \subseteq U$.
(iv) $\rightarrow(\mathrm{v})$ Suppose that $A \neq \phi$ and F is a closed set such that $A \bigcap F=\phi$. Then $(X-F)$ is open and $(X-F) \bigcap A \neq \phi$. By (iv), there exists an $\omega \beta$ - open set U such that $A \cap U \neq \phi$ and $\omega \beta C l(U) \subseteq(X-F)$. Now if we take $V=X-\omega \beta C l(U)$, then V is $\omega \beta-$ open, $F \subseteq V$ and $U \bigcap V=\phi$.
(v) \rightarrow (i) Suppose F is a closed set such that $x \in X-F$. By (v), there exist two disjoint $\omega \beta$-open sets U and V such that $x \in U$ and $F \subseteq V$. Thus, (X, τ) is $\omega \beta$-regular.

Definition 4.5.

A space (X, τ) is said to be $\omega \beta$ - normal if every two disjoint closed sets can be separated by $\omega \beta$-open sets.

Theorem 4.6.

Aspace (X, τ) is $\omega \beta$-normal if and only if for each closed set F and any open set V containing F, there exists an $\omega \beta$ - open set U such that $F \subseteq U \subset \omega \beta C l(U) \subseteq V$.

Proof.

NECESSITY. Let F be a closed set and V any open set containing F. Since $(X-V)$ and F are closed sets such that $(X-V) \cap F=\phi$, by assumption there exist two disjoint $\omega \beta$ - open sets U_{1} and U_{2} such that $(X-V) \subseteq U_{1}$ and $F \subseteq U_{2}$. Since $U_{1} \cap U_{2}=\phi, U_{1} \cap \omega \beta C l\left(U_{2}\right)=\phi$ and hence $\omega \beta C l\left(U_{2}\right) \subseteq X-U_{1} \subseteq V$. Thus $F \subseteq U_{2} \subseteq \omega \beta C l\left(U_{2}\right) \subseteq V$.
SUFFICIENCY. Let A_{1} and A_{2} be any two disjoint closed sets. Now $X-A_{2}$ is an open set containing A_{1} and by assumption there exists an $\omega \beta$ - open set B such that $A_{1} \subseteq B \subseteq \omega \beta C l(B) \subseteq X-A_{2}$. Now we take $U_{1}=B$ and $U_{2}=X-\omega \beta C l(B)$, then U_{1} and U_{2} are disjoint $\omega \beta$ - open sets such that $A_{1} \subseteq U_{1}$ and $A_{2} \subseteq U_{2}$. Therefore, (X, τ) is $\omega \beta$ - normal.

REFERENCES

Al-Zoubi, K. Y. and Al-Nashef, B. 2003. The topology of $\omega \beta$ - open subsets. Al-Manarah Journal. 9 (2): 169-179.

Andrijevic, D. 1986. Semi-pre-open sets. Mat. Vesnik. 38: 24-32.
Andrijevic, D. 1996. On b - open sets. Mat. Vesnik 48: 59-64.
Balasubramanian, G. 1982. On some generalizations of compact spaces. Glasnik Mat. 17(37) : 367-380.

Ganster, M. and Andrijević, D. 1988. On some questions concerning semipreopen sets. J. Inst. Math. Comput. Sci. Math. Ser. $1: 65-75$.

Hdeib, H. 1982. ω-closed mappings. Rev. Colomb. Mat. 16: 65-78.
Levine, N. 1963. Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly. $70: 36-41$.

Mashhour, A. S., Abd El-Monsef, M. E. and El-Deeb, S. N. 1982. On precontinuous and weak precontinuous mappings. Proc. Math. Phys. Soc. Egypt. 53: 47-53.

Monesf, M. E. A. E., El-Deeb, S. N. and Mahmoud, R. A. 1983. β - open sets and β-continuous mapping. Bull. Fac. Sci. Assiut Univ. C12: 77-90.

Navalagi, G. B. 2002. Semi-precontinuous functions and properties of generalized semi-preclosed sets in topological spaces. Internat. J. Math. Math. Sci. 29 (2): 58-98.

Njastad, O. 1965. On some class of nearly open sets. Pacific J. Math. 15: 961-970.

Noiri, T. 1984. On α-continuous functions. Časopis Pěst. Mat. 109: 118126.

Noiri, T., Al-omari, A. and M.S.M. Noorani. 2008. On ωb - open sets and b-Lindelöf spaces. Eur. J. Pure Appl. Math. 1(3): 3-9.

Tong, J. 1989. On decomposition of continuity in topological spaces. Acta Math. Hungar. 54 (1-2): 51-55.

