

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

Journal homepage: http://einspem.upm.edu.my/journal

On $\omega\beta$ – **Open Sets**

^{1*}Heyam Hussein Aljarrah, ¹Mohd. Salmi Md. Noorani and ²Takashi Noiri

¹School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Selangor, Malaysia

² 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-Ken, 869-5142 Japan

> *E-mail: hiamaljarah@yahoo.com* *Corresponding author

ABSTRACT

In this paper we introduce a new class of sets called $\omega\beta$ – open sets which contains the class of ω – open and β – open sets. Here we carry out a study of the properties of $\omega\beta$ – open sets.

Keywords: ω – open, β – open, $\omega\beta$ – open, β – Lindelöf, $\omega\beta$ – T₂, $\omega\beta$ – regular.

1. INTRODUCTION

Throughout this work a space will always mean a topological space with no separation axioms assumed, unless otherwise stated. Let (X, τ) be a space and A a subset of X. By Int(A) and Cl(A), we denote the interior of A and the closure of A, respectively, in (X, τ) . A point $x \in X$ is called a condensation point of A if for each open set U containing x, the set $U \cap A$ is uncountable. A is said to be ω -closed (Hdeib (1982)) if it contains all its condensation points. The complement of an ω -closed set is said to be ω -open. Note that a subset A of a space (X, τ) is ω -open (Al-Zoubi and Al-Nashef (2003)) if and only if for each $x \in A$ there exists an open set U containing x such that U - A is countable. The family of all ω - open subsets of a space (X, τ) , denoted by $\omega O(X, \tau)$, forms a topology on X, denoted by τ_{ω} , finer than τ . Several characterizations of ω -closed subsets were proved in Hdeib (1982).

A subset A of a space (X,τ) is said to be b-open (Andrijević (1996)) (resp. β -open (Monesf *et al.* (1983)) or semi-preopen (Andrijević (1986)) if $A \subseteq Int(Cl(A)) \cap Cl(Int(A))$ (resp. $A \subseteq Cl(Int(Cl(A)))$). The complement of a β -open set is called a β -closed set. The set of all β -open subset in (X,τ) will be denoted by $\beta O(X,\tau)$.

In 2008, Noiri *et al.* introduced the notion of ωb -open sets. They defined a subset A of a space (X,τ) to be ωb -open if for every $x \in A$ there exists a b-open set U in (X,τ) containing x such that U-A is countable. The family of all ωb -open subsets of (X,τ) will be denoted by $\omega bO(X,\tau)$.

In this paper, we introduce the notion of $\omega\beta$ – open sets which is a new generalization of both ω – open sets and β – open sets. We investigate some properties of $\omega\beta$ – open sets. Moreover, by using $\omega\beta$ – open sets, we define and investigate β – Lindelöf spaces, $\omega\beta$ – T₂ spaces, $\omega\beta$ – regular spaces, and $\omega\beta$ – normal spaces.

Now we recall some known results which will be used in the sequel.

Lemma 1.1. (Andrijevic (1986)).

If U is open and A is β -open in a space (X, τ) , then $U \cap A$ is β -open in (X, τ) .

Theorem 1.2. (Navalagi (2002)).

Let (X,τ) be a space, $A \subset Y \subset X$ and Y be β -open in (X,τ) . Then A is β -open in (X,τ) if and only if A is β -open in the subspace (Y,τ_Y) .

2. $\omega\beta$ – OPEN SETS

Definition 2.1.

A subset A of a space (X,τ) is said to be $\omega\beta$ -open if for every $x \in A$, there exists a β -open set U containing x such that U-A is countable. The family of all $\omega\beta$ - open subsets of (X,τ) will be denoted by $\omega\beta O(X,\tau)$.

Note that if X is a countable set then every subset of X is $\omega\beta$ – open in (X, τ) .

Theorem 2.2.

For any space (X, τ) , the following properties hold:

- (i) Every ωb open set is $\omega \beta$ open.
- (ii) Every β open set is $\omega\beta$ open.

The proof follows easily from Definition 2.1.
Open
$$\rightarrow b$$
 - open $\rightarrow \beta$ - open
 $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$
 ω - open $\rightarrow \omega b$ - open $\rightarrow \omega \beta$ - open

The converses need not be true as shown by the following examples.

Example 2.3.

Let $X = \{1, 2, 3\}, \tau = \{X, \phi, \{1\}, \{2\}, \{1, 2\}\}$, then $\{3\}$ is ω - open in (X, τ) , but it is not β -open.

Example 2.4.

Let $X = \mathbb{R}$ with the usual topology τ_u and let $A = \mathbb{Q}$ be the set of all rational numbers. Then, since $A \subset Int(Cl(A))$, A is b-open in (X, τ) , but it is not ω -open.

Example 2.5.

Let $X = \mathbb{R}$ with the usual topology τ_u and let $A = [0,1) \cap \mathbb{Q}$. Then, by Lemma 3.5 of Noiri (1984) $Cl(Int(Cl(A))) = Cl[Int(Cl([0,1))) \cap Int(Cl([0,1))))$

 \mathbb{Q}))] = $Cl[(0,1) \cap X] = [0,1] \supset A$. Therefore, A is β – open, but it is not ωb – open in (X, τ) by Example 2.10 of Noiri (2008).

Lemma 2.6.

A subset A of a space (X,τ) is $\omega\beta$ -open if and only if for every $x \in A$, there exists a β - open set U and a countable subset C such that $x \in U - C \subseteq A$.

Proof.

Let A be $\omega\beta$ -open and $x \in A$. Then there exists a β -open set $U \subseteq X$ containing x such that U-A is countable. Hence U is β - open, C = U - A is the countable set and $U - C \subseteq A$. The converse is obvious.

Proposition 2.7.

The intersection of an $\omega\beta$ – open set and an ω – open set is $\omega\beta$ – open.

Proof.

Let A be an $\omega\beta$ – open set and B an ω – open set. Then there exist a β – open set U_A containing x such that $U_A - A$ is countable and an open set U_B containing x such that $U_B - B$ is countable. By Lemma 1.1, $U_A \cap U_B$ is a β – open set containing x and $(U_A \cap U_B) - (A \cap B)$ $\subseteq (U_A - A) \cap (U_B - B)$ and hence $(U_A \cap U_B) - (A \cap B)$ is a countable set. Therefore $(A \cap B)$ is an $\omega\beta$ – open set.

Corollary 2.8.

The intersection of an $\omega\beta$ – open set and an open set is $\omega\beta$ – open.

The intersection of a β – open set and an $\omega\beta$ – open set is not always $\omega\beta$ – open as the following example shows. Thus, the intersection of two $\omega\beta$ – open sets need not be $\omega\beta$ – open.

Example 2.9.

Let $X = \mathbb{R}$ with the cocountable topology $\tau = \tau_{coc}$. Let A = (0,1] and B = [1,2). Then A and B are $\omega\beta$ – open, but $A \cap B$ is not $\omega\beta$ – open, since each β – open containing 1 is uncountable.

Proposition 2.10.

The union of any family of $\omega\beta$ – open sets is $\omega\beta$ – open.

Proof.

If $\{A_{\alpha} : \alpha \in \Delta\}$ is a collection of $\omega\beta$ – open subsets of X, then for every $x \in \bigcup_{\alpha \in \Delta} A_{\alpha}, x \in A_{\alpha_{\circ}}$ for some $\alpha_{\circ} \in \Delta$. Hence there exists a β – open subset U containing x such that $U - A_{\alpha_{\circ}}$ is countable. Hence $U - \bigcup_{\alpha \in \Delta} A_{\alpha}$ is countable. This shows that $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is $\omega\beta$ – open.

Definition 2.11.

The topology generated by $\omega\beta O(X,\tau)$ is defined as $T(\omega\beta O(X,\tau)) = \{V \subseteq X : V \cap S \in \omega\beta O(X,\tau) \text{ whenever } S \in \omega\beta O(X,\tau) \}.$

Proposition 2.12.

 $T(\omega\beta O(X,\tau))$ is a topology on X larger than τ .

Proof.

We first show that $T(\omega\beta O(X,\tau))$ is a topology on X. It is clear, by Definition 2.11, $\phi, X \in T(\omega\beta O(X,\tau))$. Now, let $\{U_{\alpha} : \alpha \in \Delta\}$ be a collection of $\omega\beta$ – open sets in (X,τ) , then for each $\alpha \in \Delta$, $U_{\alpha} \cap S$ is $\omega\beta$ – open in (X,τ) whenever S is $\omega\beta$ – open in (X,τ) . By Proposition 2.10, $(\bigcup_{\alpha \in \Delta} U_{\alpha}) \cap S = \bigcup_{\alpha \in \Delta} (U_{\alpha} \cap S) \in \omega\beta O(X,\tau)$ whenever $S \in \omega\beta O(X,\tau)$. Thus by Definition 2.11, $\bigcup_{\alpha \in \Delta} U_{\alpha} \in T(\omega\beta O(X,\tau))$. Finally, let $U_1, U_2 \in T($ $\omega\beta O(X,\tau))$ and S be any $\omega\beta$ – open set. Then $U_1 \cap S \in \omega\beta O(X,\tau)$ and hence $(U_1 \cap U_2) \cap S = U_2 \cap (U_1 \cap S) \in \omega\beta O(X,\tau)$. Therefore, $U_1 \cap U_2 \in T(\omega\beta O(X,\tau))$. This proves that $T(\omega\beta O(X,\tau))$ is a topology on X. To show $\tau \subseteq T(\omega\beta O(X,\tau))$, let $U \in \tau$. Then by Corollary 2.8 $U \cap S \in \omega\beta O(X,\tau)$ whenever $S \in \omega\beta O(X,\tau)$. Therefore, $U \in T(\omega\beta O(X,\tau))$. Recall that the topology generated by $\beta O(X,\tau)$ (Ganster and Andrijević (1988)) is defined as $T(\beta O(X,\tau)) = \{V \subseteq X : V \cap S \in \beta O(X,\tau)\}$ whenever $S \in \beta O(X,\tau)$ whenever $S \in \beta O(X,\tau)$ is denoted by T_{δ} . But, we use the notation $T(\beta O(X,\tau))$ instead of T_{δ} .

Theorem 2.13.

For a topological space (X,τ) , $\omega T(\beta O(X,\tau)) \subseteq T(\omega \beta O(X,\tau))$, the converse is true if every β – open set is open in (X,τ) .

Proof.

Let $A \in \omega T(\beta O(X,\tau))$. We show that $A \cap V \in \omega \beta O(X,\tau)$ for every $V \in \omega \beta O(X,\tau)$. Let $x \in A \cap V$, then $x \in A$ and $x \in V$. Then there exists $O \in T(\beta O(X,\tau))$ such that $x \in O$ and O-A is countable. And there exists $B \in \beta O(X,\tau)$ such that $x \in B$ and B-V is countable. Since $O \in T(\beta O(X,\tau))$, $x \in O \cap B \in \beta O(X,\tau)$. On the other hand, $(O \cap B) - (A \cap V) \subset (O-A) \cup (B-V)$ and $(O-A) \cup (B-V)$ is countable. Therefore, $(O \cap B) - (A \cap V)$ is countable and hence $A \cap V \in \omega \beta O(X,\tau)$. Conversely, Let $A \in T(\omega \beta O(X,\tau))$, So $A \cap V \in \omega \beta O(X,\tau)$ for every $V \in \omega \beta O(X,\tau)$. Let $x \in A \cap V$, then there exists $O \in \beta O(X,\tau)$ containing x such that $O-(A \cap V)$ is countable. By assumption, $O \in T(\beta O(X,\tau))$ such that (O-A) is countable. Hence, $A \in \omega T(\beta O(X,\tau))$.

Theorem 2.14.

Let (Y, τ_y) be a subspace of (X, τ) and $A \subseteq Y$:

- (i) If A is $\omega\beta$ -open in (X, τ) and Y is open, then A is $\omega\beta$ -open in (Y, τ_Y) .
- (ii) If A is $\omega\beta$ open in (Y, τ_Y) and Y is β open, then A is $\omega\beta$ open in (X, τ) .

Proof.

(i) Let A be $\omega\beta$ – open in (X, τ) . For every $x \in A$, there exists a β – open set U in (X, τ) containing x such that U - A is countable. If $U \subseteq Y$ by 330 Malaysian Journal of Mathematical Sciences

Theorem 1.2 U is β – open in (Y, τ_Y) containing x and hence A is $\omega\beta$ – open in (Y, τ_Y) . If U is not contained in Y, set $U_\circ = U \cap Y$. Then by Lemma 1.1 U_\circ is β – open in (Y, τ_Y) and $U_\circ - A$ is countable. Therefore, A is $\omega\beta$ – open in (Y, τ_Y) .

(ii) Let A be $\omega\beta$ – open in (Y, τ_Y) . Then for every $x \in A$, there exists a β – open set U in (Y, τ_Y) containing x such that U - A is countable. Hence by Theorem 1.2, A is $\omega\beta$ – open in (X, τ) .

In Theorem 2.14, we can not delate the assumption that Y is β -open in (X, τ) . To see that consider the space (\mathbb{R}, τ_{coc}) and the subset $Y = \mathbb{Q}$ of \mathbb{R} and take a subset $A = \{1\}$ of Y. Hence A is $\omega\beta$ -open in (Y, τ_Y) but A is not $\omega\beta$ -open in (\mathbb{R}, τ_{coc}) .

Corollary 2.15.

Let (Y, τ_Y) be a subspace of (X, τ) , $A \subseteq Y$ and Y be an open set. Then A is $\omega\beta$ – open in (X, τ) if and only if A is $\omega\beta$ – open in (Y, τ_Y) .

Definition 2.16.

A subset F of a topological space (X, τ) is said to be $\omega\beta$ - closed if X - F is $\omega\beta$ - open. The family of all $\omega\beta$ - closed subsets of (X, τ) will be denoted by $\omega\beta C(X, \tau)$.

Proposition 2.17.

Let (X,τ) be a space and $C \subseteq X$. If C is $\omega\beta$ -closed in (X,τ) , then $C \subseteq K \cap B$ for some β -closed subset K and a countable subset B.

Proof.

If C is $\omega\beta$ - closed, then X - C is $\omega\beta$ - open and hence for every $x \in X - C$, there exist a β - open set U in (X, τ) containing x and a countable set B such that $U - B \subseteq X - C$, thus $C \subseteq (X - U) \bigcup B$. Let K = X - U, then K is a β - closed set such that $C \subseteq K \bigcup B$.

Remark 2.18.

Let (X, τ) be a space and A, B subsets of X. Then the following properties hold.

- (i) The intersection of any family of $\omega\beta$ closed sets in (X, τ) is $\omega\beta$ closed.
- (ii) Every $\omega\beta$ closed set and every β closed set in (X, τ) are $\omega\beta$ closed.
- (iii) If A is ω -closed and B is $\omega\beta$ -closed, then $A \cup B$ is $\omega\beta$ -closed.

The intersection of all $\omega\beta$ – closed sets of X containing A is called the $\omega\beta$ – closure of A and is denoted by $\omega\beta Cl(A)$. And the union of all $\omega\beta$ – open sets of X contained in A is called the $\omega\beta$ – interior and is denoted by $\omega\beta Int(A)$.

Theorem 2.19.

Let A be a subset of a space (X, τ) . Then $x \in \omega\beta Cl(A)$ if and only if for every $\omega\beta$ – open set U containing x, $A \cap U \neq \phi$.

Proof.

First, suppose that $x \in \omega \beta Cl(A)$ and U is any $\omega \beta$ – open containing x such that $A \cap U = \phi$. Then (X - U) is an $\omega \beta$ – closed set containing A. Thus, $\omega \beta Cl(A) \subseteq (X - U)$. Then $x \notin \omega \beta Cl(A)$, which is a contradiction. Conversely, Suppose $x \notin \omega \beta Cl(A)$, there exists an $\omega \beta$ – closed set V such that $A \subseteq V$ and $x \notin V$. Then X - V is an $\omega \beta$ – open set containing x and $A \cap (X - V) = \phi$.

3. β – LINDELÖF SPACES

Definition 3.1.

(i) A space (X, τ) is said to be β -Lindelöf if every β -open cover of X has a countable subcover.

(ii) A subset A of a space (X,τ) is said to be β-Lindelöf relative to X if every cover of A by β-open sets of (X,τ) has a countable subcover.

Theorem 3.2.

For a space (X, τ) , the following properties are equivalent:

- (i) (X,τ) is β Lindelöf.
- (ii) Every $\omega\beta$ open cover of X has a countable subcover.

Proof.

(i) \rightarrow (ii) Let $\{U_{\alpha} : \alpha \in \Delta\}$ be an $\omega\beta$ – open cover of X. For each $x \in X$ there exists $\alpha_{(x)} \in \Delta$ such that $x \in U_{\alpha_{(x)}}$. Since $U_{\alpha_{(x)}}$ is $\omega\beta$ – open, there exists a β – open set $V_{\alpha_{(x)}}$ such that $x \in V_{\alpha_{(x)}}$ and $V_{\alpha_{(x)}} - U_{\alpha_{(x)}}$ is countable. The family $\{V_{\alpha_{(x)}} : x \in X\}$ is a β – open cover of X and (X, τ) is β – Lindelöf. There exists a countable subset, says $\alpha_{(x_1)}, \alpha_{(x_2)}, \dots, \alpha_{(x_n)}, \dots$ such that $X = \bigcup\{V_{\alpha_{(x_i)}} : i \in \mathbb{N}\}$. Now, we have $X = \{\bigcup_{i \in \mathbb{N}} (V_{\alpha_{(x_i)}} - U_{\alpha_{(x_i)}})\}$ $\bigcup\{\bigcup_{i \in \mathbb{N}} U_{\alpha_{(x_i)}}\}$. For each $\alpha_{(x_i)}, V_{\alpha_{(x_i)}} - U_{\alpha_{(x_i)}}$ is a countable set and there exists a countable subset $\Delta_{\alpha_{(x_i)}}$ of Δ such that $V_{\alpha_{(x_i)}} - U_{\alpha_{(x_i)}} \subseteq \bigcup\{U_{\alpha} : \alpha \in \Delta_{\alpha_{(x_i)}}\}$. Therefore, we have $X \subseteq [\bigcup_{i \in \mathbb{N}} (\bigcup\{U_{\alpha} : \alpha \in \Delta_{\alpha_{(x_i)}}\}) \cup (\bigcup_{i \in \mathbb{N}} U_{\alpha_{(x_i)}})]$. (ii) \rightarrow (i) The proof is obvious since every β – open set is $\omega\beta$ – open.

A family ζ of subsets of a space (X, τ) is said to have the countable intersection property if the intersection of any countable subcollection of ζ is nonempty.

Theorem 3.3.

For a space (X, τ) , the following properties are equivalent

- (i) (X,τ) is β Lindelöf.
- (ii) Every family $\{A_{\alpha} : \alpha \in \Delta\}$ of $\omega\beta$ closed sets which has the countable intersection property has a non-empty intersection.

Proof.

(i) \rightarrow (ii) First, let (X, τ) be a β -Lindelöf space and $\{A_{\alpha} : \alpha \in \Delta\}$ be a family of $\omega\beta$ – closed sets having the countable intersection property. We show that $\bigcap_{\alpha \in \Delta} A_{\alpha} \neq \phi$. Suppose that $\bigcap_{\alpha \in \Delta} A_{\alpha} = \phi$, then $\{X - A_{\alpha} : \alpha \in \Delta\}$ is a collection of $\omega\beta$ – open sets and $\bigcup_{\alpha\in\Delta}(X-A_{\alpha}) = X - \bigcap_{\alpha\in\Lambda}A_{\alpha} = X - \phi = X$. Since (X,τ) is β -Lindelöf and $\{X - A_{\alpha} : \alpha \in \Delta\}$ is an $\omega\beta$ -open cover of X, there exists a countable subset Δ_{α} of Δ such that $\bigcup \{X - A_{\alpha} : \alpha \in \Delta_{\circ}\} = X \quad \text{. Therefore } \bigcap_{\alpha \in \Delta_{\circ}} A_{\alpha} = \bigcap_{\alpha \in \Delta_{\circ}} (X - (X - A_{\alpha})) = X - (X - A_{\alpha}) = X - (X - A_{\alpha})$ $(\bigcup_{\alpha \in \Delta} (X - A_{\alpha})) = X - X = \phi$. This contradicts the fact that $\{A_{\alpha} : \alpha \in \Delta\}$ has the countable intersection property. Therefore $\bigcap_{\alpha \in A} A_{\alpha} \neq \phi$. (ii) \rightarrow (i) Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any $\omega\beta$ – open cover of X. Then $\{X - U_{\alpha} : \alpha \in \Delta\}$ is a family of $\omega\beta$ - closed sets and $\bigcap_{\alpha \in \Delta} (X - U_{\alpha}) = X - U_{\alpha}$ $(\bigcup_{\alpha \in \Delta} U_{\alpha}) = X - X = \phi$. By hypothesis, there is some countable subcollection $X - U_{\alpha_1}, ..., X - U_{\alpha_n}, ...$ of this collection such that $\bigcap_{i \in \mathbb{N}} (X - U_{\alpha_i}) = \phi$; hence $\bigcup_{k\in\mathbb{N}}U_{\alpha_k}=\bigcup_{k\in\mathbb{N}}(X-(X-U_{\alpha_k}))=X-\bigcap_{k\in\mathbb{N}}(X-U_{\alpha_k})=X\quad \text{. Thus,}\quad U_{\alpha_1},\ldots,$ $U_{\alpha_{\alpha}},...$ is a countable subcover of $\{U_{\alpha}: \alpha \in \Delta\}$.

Theorem 3.4.

If (X,τ) is β -Lindelöf and B is β -closed in (X,τ) , then B is β – Lindelöf relative to X.

Proof.

Let $\{A_{\alpha} : \alpha \in \Delta\}$ be any cover of B by β -open sets of X. Since B is β -closed, X-B is β -open and $\{A_{\alpha}: \alpha \in \Delta\} \bigcup (X-B)$ is a β -open cover of X. Since (X, τ) is β – Lindelöf, there exists a countable subcover for X, say, $\{A_{\alpha_1}, A_{\alpha_2}, ..., A_{\alpha_k}, ..., (X - B)\}$. Therefore, $B \subset \bigcup_{k \in \mathbb{N}} A_{\alpha_k}$ and hence $\bigcup_{k\in\mathbb{N}}A_{lpha_k}$ forms a countable subcover of $\bigcup_{lpha\in\Delta}A_{lpha}$ for B . Therefore, B is β – Lindelf relative to X. 334

On
$$\omega\beta$$
 – Open Set

A topological space (X, τ) is called a *P*-space (Balasubramanian 1982) if every countable intersection of open sets is open in (X, τ) .

Theorem 3.5.

Let (X,τ) be a Hausdorff P-space and $A \beta$ -Lindelöf relative to X. If $x \notin A$, then there exist disjoint open sets U and V containing x and A, respectively.

Proof.

Since X is a T_2 -space, for each $a \in A$, there exist disjoint open sets V_a and U_{x_a} containing a and x, respectively. The family $\{V_a : a \in A\}$ forms an open cover of A and hence forms a β -open cover of A. Since A is β - Lindelöf relative to X, there exists a countable subcover $V_{a1}, V_{a2}, ..., V_{an}, ...$ For each $V_{ak}, k = 1, 2, 3, ..., \infty$, there exists a corresponding $U_{x_{ak}}$ and hence $\bigcap_{k=1}^{\infty} U_{x_{ak}} = U$ is open and contains x. But U does not intersect any $V_{ak}, 1 \le k \le \infty$. The reason is that if $U \cap V_{ai} \ne \phi$, for some $1 \le i \le \infty$, then $U_{x_{ai}} \cap V_{ai} \ne \phi$ since $U \subseteq U_{x_{ak}}, k = 1, 2, 3, ..., \infty$. However, this is contrary to the way $U_{x_{ak}}$ and V_{a_k} were chosen. Thus if we define $V = \bigcup_{k=1}^{\infty} V_{ak}$, then $U \cap V = \phi, x \in U$ and $A \subseteq V$.

Theorem 3.6.

Let (X, τ) be a Hausdorff P-space. If A is β -Lindelöf relative to X, then A is closed in (X, τ) .

Proof.

Let A be β -Lindelöf relative to X and $x \notin A$. By Theorem 3.5, there exist open sets U and V containing x and A, respectively, such that $U \cap V = \phi$. Thus $U \cap A = \phi$. Therefore, $U \subseteq X - A$, which implies X - A is open. Therefore A is closed in (X, τ) .

4. SEPARATION AXIOMS

Definition 4.1.

A space (X,τ) is said to be $\omega\beta - T_2$ if for each two distinct points $x, y \in X$, there exist two $\omega\beta$ – open sets U and V such that $x \in U, y \in V$ and $U \cap V = \phi$.

Note that every T_2 – space is $\omega\beta - T_2$ but the converse is not true. For example, consider the space (\mathbb{N}, τ_{cof}) , where \mathbb{N} is the set of all natural numbers and τ_{cof} is the cofinite topology. Since every subset of (\mathbb{N}, τ_{cof}) is $\omega\beta$ – open, (\mathbb{N}, τ_{cof}) is $\omega\beta - T_2$, but (\mathbb{N}, τ_{cof}) is not a T_2 – space.

Theorem 4.2.

For any space (X, τ) , the following properties are equivalent:

- (i) (X,τ) is $\omega\beta T_2$.
- (ii) Let $x \in X$. For each $y \in X \{x\}$, there exists an $\omega\beta$ open set U containing x such that $y \notin \omega\beta Cl(U)$.
- (iii) For each $x \in X$, $\bigcap \{ \omega \beta Cl(U) : U \text{ is an } \omega \beta \text{ open set containing } x \} = \{x\}.$

Proof.

(i) \rightarrow (ii) Suppose that (X, τ) is $\omega\beta - T_2$. Then for any distinct points x, y, there exist two disjoint $\omega\beta$ - open sets U and V containing x and y, respectively. Thus $U \subseteq X - V$ and hence $\omega\beta Cl(U) \subseteq X - V$. Therefore, $y \notin \omega\beta Cl(U)$.

(ii) \rightarrow (iii) Let $x \in X$ and $y \in X - \{x\}$. Then by (ii) $y \notin \omega\beta Cl(U)$ for some $\omega\beta$ – open set U containing x. Therefore, $\bigcap \{\omega\beta Cl(U) : U \text{ is an } \\ \omega\beta$ – open set containing $x\} \subset \{x\}$.

(iii) \rightarrow (i) Suppose that $x, y \in X$ and $x \neq y$. Then there exists an $\omega\beta$ - open set U containing x such that $y \notin \omega\beta Cl(U)$. Now take $V = X - \omega\beta Cl(U)$, then V is $\omega\beta$ - open. Hence $x \in U, y \in V$ and $U \cap V = \phi$. Therefore, (X, τ) is $\omega\beta - T_2$.

Definition 4.3.

A space (X, τ) is said to be $\omega\beta$ – regular if each pair of a point and a closed set not containing the point can be separated by disjoint $\omega\beta$ – open sets.

Theorem 4.4.

For a space (X, τ) , the following properties are equivalent:

- (i) (X, τ) is $\omega\beta$ regular.
- (ii) For each $x \in X$ and each open set U containing x, there exists an $\omega\beta$ open set V such that $x \in V \subseteq \omega\beta Cl(V) \subseteq U$.
- (iii) For each closed set F, $\bigcap \{ \omega \beta Cl(V) : F \subseteq V, V \text{ is } \omega \beta \text{open} \} = F$.
- (iv) For each subset A of (X, τ) and each open set U in (X, τ) with $A \cap U \neq \phi$, there exists an $\omega\beta$ open set V such that $V \cap A \neq \phi$ and $\omega\beta Cl(V) \subseteq U$.
- (v) For each non-empty set A and each closed set F with $A \cap F = \phi$, there exist two disjoint $\omega\beta$ – open sets U and V such that $A \cap U \neq \phi$ and $F \subseteq V$.

Proof.

(i) \rightarrow (ii) Let U be an open set and $x \in U$. Then X - U is closed in X and $x \notin X - U$. By (i), there exist two disjoint $\omega\beta$ - open sets V_1 and V_2 such that $(X - U) \subseteq V_1$ and $x \in V_2$. Therefore, $V_2 \subseteq (X - V_1)$ and hence $x \in V_2 \subseteq \omega\beta Cl(V_2) \subseteq X - V_1 \subseteq U$.

(ii) \rightarrow (iii) Let F be a closed set and $x \notin F$. By (ii), there exists an $\omega\beta$ - open set V such that $x \in V \subseteq \omega\beta Cl(V) \subseteq (X - F)$. Now, we take $U = X - \omega\beta Cl(V)$, then U is $\omega\beta$ - open, $F \subset U$ and $U \cup V = \phi$. By Theorem 2.19, $x \notin \omega\beta Cl(U)$. Thus $\bigcap \{\omega\beta C(V) : F \subseteq V, V \text{ is } \omega\beta$ - open} $\subset F$. And the converse is obvious.

(iii) \rightarrow (iv) Let A be a subset of X and U be an open set such that $x \in U \cap A$. Then $x \notin (X - U)$ and by (iii), there exists an $\omega\beta$ - open set V such that $X - U \subseteq V$ and $x \notin \omega\beta Cl(V)$. Now take $M = X - \omega\beta Cl(V)$, then M is an $\omega\beta$ - open set containing x. Thus, $A \cap M \neq \phi$ and $M \subseteq X - V$ and hence $\omega\beta Cl(M) \subseteq X - V \subseteq U$.

(iv) \rightarrow (v) Suppose that $A \neq \phi$ and F is a closed set such that $A \cap F = \phi$. Then (X - F) is open and $(X - F) \cap A \neq \phi$. By (iv), there exists an $\omega\beta$ -open set U such that $A \cap U \neq \phi$ and $\omega\beta Cl(U) \subseteq (X - F)$. Now if we take $V = X - \omega\beta Cl(U)$, then V is $\omega\beta$ -open, $F \subseteq V$ and $U \cap V = \phi$.

 $(v) \rightarrow (i)$ Suppose F is a closed set such that $x \in X - F$. By (v), there exist two disjoint $\omega\beta$ - open sets U and V such that $x \in U$ and $F \subseteq V$. Thus, (X, τ) is $\omega\beta$ - regular.

Definition 4.5.

A space (X, τ) is said to be $\omega\beta$ – normal if every two disjoint closed sets can be separated by $\omega\beta$ – open sets.

Theorem 4.6.

Aspace (X, τ) is $\omega\beta$ -normal if and only if for each closed set F and any open set V containing F, there exists an $\omega\beta$ -open set U such that $F \subseteq U \subset \omega\beta Cl(U) \subseteq V$.

Proof.

NECESSITY. Let F be a closed set and V any open set containing F. Since (X-V) and F are closed sets such that $(X-V) \cap F = \phi$, by assumption there exist two disjoint $\omega\beta$ – open sets U_1 and U_2 such that $(X-V) \subseteq U_1$ and $F \subseteq U_2$. Since $U_1 \cap U_2 = \phi, U_1 \cap \omega\beta Cl(U_2) = \phi$ and hence $\omega\beta Cl(U_2) \subseteq X - U_1 \subseteq V$. Thus $F \subseteq U_2 \subseteq \omega\beta Cl(U_2) \subseteq V$.

SUFFICIENCY. Let A_1 and A_2 be any two disjoint closed sets. Now $X - A_2$ is an open set containing A_1 and by assumption there exists an $\omega\beta$ - open set B such that $A_1 \subseteq B \subseteq \omega\beta Cl(B) \subseteq X - A_2$. Now we take $U_1 = B$ and $U_2 = X - \omega\beta Cl(B)$, then U_1 and U_2 are disjoint $\omega\beta$ - open sets such that $A_1 \subseteq U_2$. Therefore, (X, τ) is $\omega\beta$ - normal.

REFERENCES

- Al-Zoubi, K. Y. and Al-Nashef, B. 2003. The topology of $\omega\beta$ open subsets. *Al-Manarah Journal*. **9** (2): 169-179.
- Andrijevic, D. 1986. Semi-pre-open sets. Mat. Vesnik. 38: 24-32.

Andrijevic, D. 1996. On *b* – open sets. *Mat. Vesnik* **48**: 59-64.

- Balasubramanian, G. 1982. On some generalizations of compact spaces. *Glasnik Mat.* **17**(37) : 367-380.
- Ganster, M. and Andrijević, D. 1988. On some questions concerning semipreopen sets. J. Inst. Math. Comput. Sci. Math. Ser. 1: 65-75.
- Hdeib, H. 1982. ω-closed mappings. Rev. Colomb. Mat. 16: 65-78.
- Levine, N. 1963. Semi-open sets and semi-continuity in topological spaces. *Amer. Math. Monthly.* **70** : 36-41.
- Mashhour, A. S., Abd El-Monsef, M. E. and El-Deeb, S. N. 1982. On precontinuous and weak precontinuous mappings. *Proc. Math. Phys. Soc. Egypt.* 53: 47-53.
- Monesf, M. E. A. E., El-Deeb, S. N. and Mahmoud, R. A. 1983. β open sets and β continuous mapping. *Bull. Fac. Sci. Assiut Univ.* C12: 77-90.
- Navalagi, G. B. 2002. Semi-precontinuous functions and properties of generalized semi-preclosed sets in topological spaces. *Internat. J. Math. Math. Sci.* 29 (2): 58-98.
- Njastad, O. 1965. On some class of nearly open sets. *Pacific J. Math.* 15: 961-970.
- Noiri, T. 1984. On α continuous functions. Časopis Pěst. Mat. 109: 118-126.
- Noiri, T., Al-omari, A. and M.S.M. Noorani. 2008. On ωb open sets and b Lindelöf spaces. *Eur. J. Pure Appl. Math.* 1(3): 3-9.

Tong, J. 1989. On decomposition of continuity in topological spaces. Acta Math. Hungar. 54 (1-2): 51-55.